python中np.multiply()、np.dot()和星號(hào)(*)三種乘法運(yùn)算的區(qū)別詳解
為了區(qū)分三種乘法運(yùn)算的規(guī)則,具體分析如下:
import numpy as np1. np.multiply()函數(shù)
函數(shù)作用
數(shù)組和矩陣對(duì)應(yīng)位置相乘,輸出與相乘數(shù)組/矩陣的大小一致
1.1數(shù)組場景A = np.arange(1,5).reshape(2,2)A
array([[1, 2], [3, 4]])
B = np.arange(0,4).reshape(2,2)B
array([[0, 1], [2, 3]])
np.multiply(A,B) #數(shù)組對(duì)應(yīng)元素位置相乘
array([[ 0, 2], [ 6, 12]])
1.2 矩陣場景np.multiply(np.mat(A),np.mat(B)) #矩陣對(duì)應(yīng)元素位置相乘,利用np.mat()將數(shù)組轉(zhuǎn)換為矩陣
matrix([[ 0, 2],[ 6, 12]])
np.sum(np.multiply(np.mat(A),np.mat(B))) #輸出為標(biāo)量
20
2. np.dot()函數(shù)函數(shù)作用
對(duì)于秩為1的數(shù)組,執(zhí)行對(duì)應(yīng)位置相乘,然后再相加;
對(duì)于秩不為1的二維數(shù)組,執(zhí)行矩陣乘法運(yùn)算;超過二維的可以參考numpy庫介紹。
2.1 數(shù)組場景2.1.1 數(shù)組秩不為1的場景
A = np.arange(1,5).reshape(2,2)A
array([[1, 2], [3, 4]])
B = np.arange(0,4).reshape(2,2)B
array([[0, 1], [2, 3]])
np.dot(A,B) #對(duì)數(shù)組執(zhí)行矩陣相乘運(yùn)算
array([[ 4, 7], [ 8, 15]])
2.1.2 數(shù)組秩為1的場景
C = np.arange(1,4)C
array([1, 2, 3])
D = np.arange(0,3)D
array([0, 1, 2])
np.dot(C,D) #對(duì)應(yīng)位置相乘,再求和
8
2.2 矩陣場景np.dot(np.mat(A),np.mat(B)) #執(zhí)行矩陣乘法運(yùn)算
matrix([[ 4, 7],[ 8, 15]])
3. 星號(hào)(*)乘法運(yùn)算作用
對(duì)數(shù)組執(zhí)行對(duì)應(yīng)位置相乘
對(duì)矩陣執(zhí)行矩陣乘法運(yùn)算
3.1 數(shù)組場景A = np.arange(1,5).reshape(2,2)A
array([[1, 2], [3, 4]])
B = np.arange(0,4).reshape(2,2)B
array([[0, 1], [2, 3]])
A*B #對(duì)應(yīng)位置點(diǎn)乘
array([[ 0, 2], [ 6, 12]])
3.2矩陣場景(np.mat(A))*(np.mat(B)) #執(zhí)行矩陣運(yùn)算
matrix([[ 4, 7],[ 8, 15]])
到此這篇關(guān)于python中np.multiply()、np.dot()和星號(hào)(*)三種乘法運(yùn)算的區(qū)別詳解的文章就介紹到這了,更多相關(guān)python np.multiply()、np.dot()和星號(hào)內(nèi)容請(qǐng)搜索好吧啦網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持好吧啦網(wǎng)!
相關(guān)文章:
1. ASP中實(shí)現(xiàn)字符部位類似.NET里String對(duì)象的PadLeft和PadRight函數(shù)2. vue前端RSA加密java后端解密的方法實(shí)現(xiàn)3. php使用正則驗(yàn)證密碼字段的復(fù)雜強(qiáng)度原理詳細(xì)講解 原創(chuàng)4. JSP+Servlet實(shí)現(xiàn)文件上傳到服務(wù)器功能5. vue項(xiàng)目登錄成功拿到令牌跳轉(zhuǎn)失敗401無登錄信息的解決6. 基于javaweb+jsp實(shí)現(xiàn)企業(yè)財(cái)務(wù)記賬管理系統(tǒng)7. asp批量添加修改刪除操作示例代碼8. ASP動(dòng)態(tài)網(wǎng)頁制作技術(shù)經(jīng)驗(yàn)分享9. CSS可以做的幾個(gè)令你嘆為觀止的實(shí)例分享10. 淺談?dòng)蓀osition屬性引申的css進(jìn)階討論

網(wǎng)公網(wǎng)安備